Hölder Estimates for Solutions of Degenerate Nondivergence Elliptic and Parabolic Equations
نویسنده
چکیده
We deal with a class of nondivergence type elliptic and parabolic equations degenerating at the coordinate hyperplanes. Assuming that the degeneration is coordinatewise and varies regularly, we prove the Hölder continuity of solutions. Also, the approximative solutions are considered. §
منابع مشابه
Hölder Regularity of Solutions to Second-Order Elliptic Equations in Nonsmooth Domains
We establish the global Hölder estimates for solutions to second-order elliptic equations, which vanish on the boundary, while the right-hand side is allowed to be unbounded. For nondivergence elliptic equations in domains satisfying an exterior cone condition, similar results were obtained by J. H. Michael, who in turn relied on the barrier techniques due to K. Miller. Our approach is based on...
متن کاملOn Second Order Elliptic and Parabolic Equations of Mixed Type
It is known that solutions to second order uniformly elliptic and parabolic equations, either in divergence or nondivergence (general) form, are Hölder continuous and satisfy the interior Harnack inequality. We show that even in the one-dimensional case (x ∈ R1), these properties are not preserved for equations of mixed divergence-nondivergence structure: for elliptic equations Di(a 1 ijDju) + ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملMultilinear Littlewood-Paley estimates with applications to partial differential equations.
We obtain a collection of multilinear Littlewood-Paley estimates, which we then apply to two problems in partial differential equations. The first problem is the estimation of the square root of an elliptic operator in divergence form, and the second is the estimation of solutions to the Cauchy problem for nondivergence-form parabolic equations.
متن کاملHölder-estimates for non-autonomous parabolic problems with rough data
In this paper we establish Hölder estimates for solutions to non-autonomous parabolic equations on non-smooth domains which are complemented with mixed boundary conditions. The corresponding elliptic operators are of divergence type, the coefficient matrix of which depends only measurably on time. These results are in the tradition of the classical book of Ladyshenskaya et al. [39], which also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010